Galaxy growth as seen through simulations and models

Charlotte Christensen

Grinnell College

Romeel Davé, Alyson Brooks, Andrew Pontzen, Fabio Governato

Stellar Mass Fraction vs. Halo Mass

Stellar Mass Fraction vs. Halo Mass

Stellar Mass Fraction vs. Halo Mass

Dark Matter only models predict: Missing satellites

Milky Way

Simulations

Stellar feedback results in

Dark Matter only models predict: Too concentrated of galaxies

+ Milky Way

→ Simulations

Stellar feedback results in

What would a theorist like to have?

- → Spatially resolved star formation histories for a range of galaxies including ellipticals and extremely isolated faint dwarf galaxies.
- → Observations of sites of outflows
- → Measurements of the CGM

A simulator's approach

- → Given a hydrodynamic code that produces galaxies with reasonably realistic properties, using a physicallymotivated, tuned model for stellar feedback, let's back out information about outflow properties as a function of halo mass
 - → Amount of ejection and recycling
 - + Source of gas
 - → Metallicity of gas

Code: Gasoline (Wadsley+ 2004)

- → SPH code
- → Cosmic UV background radiation
- → H & He ionization; non-equilibrium H₂
 (Christensen+ 2012)
- → Metal line cooling and metal diffusion (Shen+
 2010)
- → Probabilistic star formation based on freefall time and H₂ abundance (shielded fraction) (Christensen+ 2012)
- → Supernovae feedback from type II and type Ia (blastwave, E_{SN}=10⁵¹ ergs) (Stinson+ 2006)

Blastwave Model for Feedback

- Thermal energy is transferred to gas particles near the star
- → Cooling is disabled for the period of time equal to the momentum-conserving (snowplow) phase of the blastwave
 - + function of E, P and ρ (McKee and Ostriker 1977)

$$t_{\text{max}} = 10^{6.85} E_{51}^{0.32} n_0^{0.34} \tilde{P}_{04}^{-0.70} \text{ yr.}$$

 The hot particle will naturally rise from the disk (no kick needed, no information about the halo included)

Cosmological Simulations

Simulations

- 20 central galaxies from zoom-in, cosmological simulations.
- Virial masses at z = 0 from $5 \times 10^9 10^{12}$ M_{\odot}
- Gas particle masses: $3300M_{\odot}$ or $25,000M_{\odot}$
- Softening lengths: 87 or 170 pc

Observed relations of global properties at z = 0

Also, realistic sizes, and gas fractions

Tracking Particles

- ★ Ejected gas:
 - → Must have once been in the disk
 - ★ Kinetic energy greater than potential energy from the disk
- → (100 Myr time resolution)

Baryonic Fraction

Baryonic Fraction

Mass Loading Factor for Ejected Material

Spread of outflow material

Number of Times a Particle is Reaccreted

Amount of Time Before Reaccretion

Metal Enrichment of Outflows

Log Metallicity of Gas (slice through center of galaxy)

Observations of CGM through Quasar Absorption Line Spectra

Metal budget

Peeples+2014

Compare with McQuinn+ 2015 of Leo P

Eventual Location of Metals

Working with semi-analytic models

- → What SAMs add
 - → Dramatically increase statistics
 - → Allows for testing of individual prescriptions
 - ★ Results in develop analytic models
- → Using simulations to inform SAMs
 - → Input models derived from simulations into SAM
 - → Select merger history from dark matter and resimulate with SAM
- → Work done by Yotam Cohen with Rachel Somerville and myself

Comparing Sims and SAMs

Comparing Sims and SAMs

Comparing Sims and SAMs

Summary and plan for future

- → We know that stellar feedback has a profound effect on galaxy growth and structure and yet is poorly understood
- → Use detailed simulations to measure properties of outflows and the resulting CGM
- Apply models derived from simulations to SAMs to produce populations of galaxies and to interpret the simulations
- ★ In an ideal future, combine with measurements of resolved star formation histories, outflowing gas, and the CGM